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The native anomalous phasing method will have
greatest application to cases where poor occupancy or
multiple substitution occurs, making direct interpreta-
tion of isomorphous difference Pattersons difficult.
Alternatively, this method may be useful for locating
relative origins for the binding sites from several deriv-
atives in unfavorable space groups, such as P1. The
major reasons for the success of the method are that
full occupancy of the native anomalous scatterer al-
ways occurs, the number and types of binding sites are
chemically defined, and the X-ray data are inherently
more accurate, since no scaling is needed for anom-
alous pairs and lack of isomorphism never occurs.
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Crystals of 1,8-bis(dimethylamino)naphthalene, C;4H;sN,, are orthorhombic, space group P2,2,2,,
with a=12-855 (1), b=10-110 (1), ¢=9-664 (1) A and Z=4. A complete structure determination, in-
cluding refinement of the positions of the hydrogen atoms, led to an R index of 0-053 and a goodness-of-
fit of 2:02 for 1477 reflections. The molecule adopts a conformation in which one carbon atom of each
of the dimethylamino groups is eclipsed with respect to the naphthalene ring. Hindrance between the
dimcthylamino groups and/or rcsonancc intcractions between the dimcthylamino groups and the
aromatic ring are sufficiently great to distort the ring in several ways, the most conspicuous being a
sizable increase in the non-bonded C(1)- - - C(8) distance (2-56 A) compared to the C(4)- - - C(5) distance
(2-44 A) and a twisting of the naphthalene ring into a considerably nonplanar conformation.

Introduction

The title compound, N,N,N’,N’-tetramethyl-1,8-di-
aminonaphthalene (I), is especially interesting for its un-
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usual basic properties (‘the proton sponge’; Alder,
Bowman, Steele & Winterman, 1968) and for the steric
effects which are expected to be encountered and their
influence on the conformation that the molecule will
find most favorable. Normally, there is strong reso-
nance interaction between a dimethylamino group and
an aromatic ring, so that one might expect a planar con-
formation to be favored (¢f., e.g. Wheland, 1955). How-
ever, because of the steric difficuities for compounds
such as (I), there is no reasonable possibility of bringing
even one of the dimethylamino groups into the plane
of the ring. Alternative possibilities include (1I), where
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the methyl groups are out of one another’s way but the
nitrogen lone pairs are brought face to face; (III), where
the lone pairs are favorably situated relative to one an-
other but one pair of methyl groups interferes strongly
with a nitrogen atom; and (IV), a compromise achieved
at the expense of some interference between one methyl
group on each nitrogen atom and the hydrogens at po-
sitions 2 and 7. A further question concerns the amount
of & character in the C(ring)-N bonds, and whether it
might be sufficient to force the nitrogen atoms into
planar configurations. Because of our interest in these
questions, and the general interest in peri interactions
(Balasubramaniyan, 1966; Anderson, Franck & Man-
della, 1972), we have undertaken an X-ray diffraction
study of L.

(CH3)2N  N(CH3)

)
CHj3 CH3 CH; CHj ,C§3 ]CH3
NN =N IND H—:N:::N:—H
/ \ NN\ | AN
CH, CH, CH, CHs CH;  CH,
(I7) (IIT) (Iv)
Experimental

Crystals were obtained by evaporation of a solution of
I (Aldrich) in methanol at room temperature. Prelimi-
nary film work indicated orthorhombic symmetry; sys-
tematic absence of reflections 400, 0k0 and 00/ with 4, &
or / odd is characteristic of the space group P2,2,2,.
Lattice constants were obtained from a least-squares fit
to 16 carefully centered 26 values ranging between 40
and 85°, measured on a quarter-circle diffractometer at
23(2)°C using Cu Ko radiation. The density was mea-
sured by flotation in an aqueous solution of ZnBr,. Crys-
tal data are given in Table 1.

Table 1. Crystal data

C14H18N2
F.W. 214-3
Qmecas = 1-12 (1) g cm—S
Qcare =1-13 gcm ™3

Orthorhombic
Space group, P2,2,2,
a=12-855 (1) A

b=10-110 (1) Z=4

c= 9664 (1) F(000) =464

AMCu Kx)=1-5418 A ulo=463 cm? g~! (for Cu Ko
radiation)

The crystals used in the film work were exposed to
the air, and suffered rather rapid decomposition. Ac-
cordingly, the crystal used to collect intensity data was
enclosed in a thin-wall glass capillary (Raebiger) under
an argon atmosphere. It was a rectangular prism with
dimensions of about 0-1 x 0-2 x 0-4 mm, mounted with its
long dimension (the ¢ axis) slightly canted with respect
to the ¢ axis of the diffractometer. Two data sets were
collected. The first set, which was the basis for the sotu-
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tion and initial refinement of the structure, comprised
720 independent reflections, out to 40° in 26, collected
using graphite-monochromated Mo Kz radiation and
an automated full-circle diffractometer operating in a
0-26 scan mode at a variable scan speed. Since the
counting statistics were poor and many of the measured
intensities lay near the threshold of significance, a sec-
ond data set was collected using a highly modified
Datex-automated General Electric XRD-5 diffractom-
eter operating with Ni-filtered Cu K« radiation, a
quarter-circle goniostat, scintillation counter and pulse-
height analyzer. Four octants of reciprocal space out
to 20=147° were surveyed using a 6-26 scan at a rate
of 1° (in 26) per minute, background counts of 20 sec
at each extremum, and a scan range which increased
from 2-0° for all reflections with 26 <50° to 4-0° at
20=150°. Since an important aspect of the investiga-
tion lay in determining reliable positions for the hydro-
gen atoms, the measurements were repeated two more
times for all reflections with 26 < 50°, once with the
intensity of the X-ray beam reduced by about 50% (in
order to check on coincidence losses and counter over-
flow). Three standard reflections were monitored con-
tinually. During the 27 days of data collection, they
showed a small, linear decay, the intensities dropping to
about 96 % of their initial values. The measured inten-
sities and their standard deviations were adjusted to
compensate for this decay and, where necessary, for the
reduction in beam intensity. Observational variances
c*(I) were assigned on the basis of counting statistics
plus an additional term (0-02S)?, where S is the scan
count.

At this stage, the data were perused very carefully;
while no formal statistics were collected, it appeared
that the general agreement among the equivalent ob-
servations was within the assigned errors. There was no
indication of coincidence loss for the strong intensities;
however, it was apparent that the 110 and 102 reflec-
tions had exceeded the counter capacity (107 counts),
even at reduced beam intensity. These two intensities
were corrected for the overflow, but were assigned arti-
ficially low weights during subsequent refinements. In
addition, the 012 reflection had overflowed the counter
when collected at normal beam intensity, and one mea-
surement (of a total of approximately 7900) was obvious-
ly faulty because of failure of the instrumentation.

Intensities from the four different octants were then
averaged, the small effects of anomalous dispersion
being ignored. Thus, 12 sets of measurements entered
into the final values of F? for most of the low-angle
data, and four for the high-angle reflections. Weights
were taken as the sum of the weights of the individual
measurements, but only up to a total five (this admit-
tedly arbitrary limit was established in order that the
contribution of systematic errors and of deficiencies
in the theoretical model, as represented by the term
(0-025)?, would not be negated for the low-angle data).
The total number of independent reflections was 1477,
Of these, 81 averaged intensities were less than zero,
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Table 2. Positional and thermal parameters

Parameters for C(1) to C(16) are multiplied by 10*. Anisotropic temperature factors are expressed as:
exp {— (A Buy+ k*Baz + B33+ hkBio+ hifis + kiB3)}

E.s.d.’s are in parentheses.

X y z ﬁu
C(1) 1863 (2) 926 (2) 1416 (2) 66 (2)
C(2) 1591 (2) - 2208 (3) 1760 (3) 85(3)
C(3) 2336 (3) 3191 (3) 1906 (3) 117 (3)
C(4) 3339 (3) 2938 (3) 1656 (3) 107 (2)
C(5) 4727 (2) 1396 (3) 1043 (3) 77 (2)
C(6) 5057 (2) 172 (4) 780 (3) 57 (2)
C(7) 4379 (2) —919 (3) 893 (3) 87 (2)
C(8) 3347 (2) —755@3) 1215 (2) 66 (2)
C(9) 2938 (2) 577 (2) 1319 (2) 58 (2)
C(10) 3672 (2) 1633 (2) 1344 (2) 65 (2)
N(11) 1087 (1) —-6(2) 1154 (2) 56 (1)
N(12) 2695 (2) —1841(2) 1447 (2) 92 (2)
C(13) 1077 (3) —-618 (3) —222 (3) 79 (2)
C(14) 35(2) 268 (4) 1638 (4) 67 (3)
C(15) 3024 (4) —3125 (4) 918 (4) 149 (4)
C(16) 2210 (3)  —1947 (3) 2814 (3) 104 (3)

none by more than 2-7 (/). Finally, the intensities and
their standard deviations were corrected for Lorentz and
polarization effects, but not for absorption (uf,,,, >~ 0-2).

Structure determination and refinement

A three-dimensional Patterson map was calculated
from the first (Mo) data set. Examination of sections at
w==0 and w=1 indicated that the molecular plane lies
approximately perpendicular to ¢ and at z~$. The po-
sition and orientation of the molecule were derived by
fitting a calculated vector map of a 1,8-disubstituted
naphthalene grouping to the:e two Patterson sections.
A structure-factor calculation for this model produced
an R index, X||F,|—|F.|/>|F,|, of 0-65. A subsequent
electron-density map showed peaks for the four methyl
carbon atoms, completing the heavy-atom model.

The full-matrix least-squares refinements which fol-
lowed minimized the function >w[F2—(1/K?)F?}?,
where w=1/¢?(F?). Refinement with the Mo data was
discontinued after several cycles on an isotropic model
when it became clear that the number and quality of
these data were insufficient to justify continuing. Re-
finement was resumed after the Cu data were collected.
After two cycles of isotropic refinement, difference
Fourier maps revealed the positions of all the hydrogen
atoms. Subsequent refinement, which included as par-
ameters the positions and anisotropic temperature fac-
tors of the heavy atoms, the positions and isotropic
temperature factors of the hydrogen atoms, a secondary
extinction coefficient [Larson, 1967, equation (3)],and a
scalefactor K, converged in five cycles, when no shift was
as much as 20% of its e.s.d. The final R index for the
1396 reflections with net intensities greater than zero is
0-053; the goodness-of-fit, based on all 1477 measured
intensities and 218 parameters, is 2-02. A three-dimen-
sional difference map showed no feature as large as
+0-2 e A~3. Final values of the parameters are listed
in Table 2, and of the observed and calculated structure
factors in Table 3. ’

1613
ﬂ22 ﬁ33 512 ﬂlS ﬂZS
102 (3) 91(3) —18(4) 10 (4) 2(5)
113 (3) 148 (4) 10 (5) 18(5) —13(5)
106 (3) 183 (5) 13 (5) 26(6) —31(7)
108 (3) 136 (4) —77(5)  —5(5) 10 (6)
175 (4) 141 (4) —45(5) —7(5) 46 (7)
234 (5) 172 (4) 8 (6) 23 (5) 52 (8)
145 (4) 152 (4) 54 (5) 20 (5) 4(7)
113 (3) 93 (3) 10 (4) 4 (4) 6 (5)
99 (2) 83(2) —15(03) 8 (4) 9 (5)
126 (3) 95(3) —28(4) -7 (4 29 (5)
127 (2) 117(3) -32@3) 20(3) —13(5)
87 (2) 125 (3) 3(3) 1(4) 3 (5)
162 (4) 128 (4) =34(5) —32(5) —32(7)
211 (5) 185(5) —17 (6) 35(6) —8(9)
112 (3) 205 (6) S1(7)  —27(8) —36(8)
137 (4) 141 (4) —41(6) 16 (6) 57 (7)

Table 2 (cont.)

Positional parameters for hydrogen atoms are multiplied by 10°.

x y z B(AY)
H(17) 78 (2) 241 (2) 187 (2) 67 (6)
H(18) 210 (2) 412 (2) 209 (3) 7-5(7)
H(19) 393 (2) 357 (2) 164 (3) 6:8 (6)
H(20) 524 (2) 223 (2) 108 (3) 7-7(7)
H(21) 575 (2) —7(2) 62 (3) 85 (8)
H(22) 462 (2) —182(2) 75 (2) 5-1 (6)
H@31) 65 (2) —7(2) —79 (3) 7-8 (8)
H(32) 82 (2) —160(3) —13(3) 8-2 (8)
H(33) 180 (2) —70(2) —54 (2) 5:7 (6)
H41) —37(Q) —58(2) 148 (3) 8-8 (9)
H(42) —34(2) 99 (2) 108 (3) 81 (8)
H(43) 7() 69 (2) 266 (3) 8-3 (8)
H(51) 224 (2) —-363 (3) 90 (3) 10-3 (10)
H(52) 328 (2) —-299(3) -1() 9:2 (10)
H(53) 364 (2) —355(3) 150 (3) 8-7 (8)
H(61) 149 (2) —241(3) 268 (3) 9-9 (9)
H(62) 200 (2) —98 (2) 318 (2) 7-0 (7)
H(63) 266 (2) —243(3) 346 (3) 9-8 (9)

Computations were carried out on an IBM 370-155
computer under the CRYM system. Form factors for
C and N were from International Tables for X-ray Crys-
tallography (1962) and for H from Stewart, Davidson
& Simpson (1965).

The pro forma values of the e.s.d.’s of the coordinates
(Table 2) lead to e.s.d.’s in the bond distances that
range from 0-003 to 0-004 A for bonds involving C(1)
and C(8), and from 0-004 to 0-005 A for bonds between
other pairs of heavy atoms. On the other hand, the
differences between bond lengths expected to be equiv-
alent — particularly within the naphthalene ring - sug-
gest that the e.s.d.’s should be approximately twice as
large. We do not understand this discrepancy; we can
only suggest that the effects of bonding electrons or
aspherical atomic wave functions may be especially
pronounced in this instance, in which the relatively
high temperature factors make the low-angle data of
greater importance. To support this thesis, we note that
the weighted residuals for the low-angle data tend to be
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larger than those for the high-angle data; however,
attempts to alter the weighting function so as to de-
crease the influence of the low-angle data did not lead
to closer agreement between equivalent bond distances.
In any event, we choose to quote a pragmatic value of
about 0-008 A as the e.s.d.’s for bond distances between
heavy atoms, and about 0-05 A for bonds involving
hydrogen atoms.

PERI INTERACTIONS

Results and discussion

The molecule adopts a conformation similar to IV (see
Introduction), but with the dimethylamino groups ro-
tated so as to bring two of the methyl groups into the
plane of the naphthalene ring. A drawing of the mole-
cule, viewed along the central C(9)-C(10) bond, is
shown in Fig. 1; the most important non-bonded inter-

Table 3. Values of F,, F, and o(F,) (all x50)

A minus sign preceding F, indicates that the measured value of F? was negative, by the amount — F2 Standard deviations o(F,)
were evaluated from the relationship o(F,) = {|F2 +o(F?)}/*—|F,|. Artificially high standard deviations were assigned to the
intensities of the 110 and 102 reflections, which exceeded the capacity of the counter. The final value of the secondary extinction

parameter g [Larson, 1967, equation (3)] is 1-04 (6)x 10~ % e~2
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atomic contacts are included. Bond distances and an-
gles are shown in Fig. 2(a) and (b), and in Table 4.

Table 4. Carbon-hydrogen bond distances (A)
E.s.d.’s are about 0-05 A.

CQ)—H17) 107 C(14)-H@41)  1-02
C(3)—H\8) 100 C(14)-H(42) 102
C(4)—H(19)  0-99 C(14)-H(43)  1-08
C(5)—H(20) 107 C(15)-H(51)  1-13
C(6)—H(21) 093 C(15-H(52) 096
C(H—H(22) 097 C(15)-H(53)  1-06
C(13)-H(31) 096 C(16)-H(61)  1-04
C(13)-H(32) 105 C(16)-H(62) 107
C(13)-H(33) 098 C(16)-H(63)  0-98

The C(ring)-N bond lengths, which average
1-398 +0-006 A, correspond to about 20 % double-bond
character (see, for example, Marsh, Bierstedt & Eich-
horn, 1962). Further evidence of the n character of
these bonds lies in the C-N-C angles, for which the
average value of 116° is appreciably larger than ex-
pected for pure sp® hybridization. A striking feature
of the C-C bond distances within the naphthalene
ring is the asymmetry across the plane bisecting the
C(9)-C(10) bond: the four bonds involving C(4) and
C(5) average about 0-035 A shorter than the corre-
sponding bonds involving C(1) and C(8). This effect is
presumably due to two causes: the partial double-bond
character of the C-N bonds, which leads to a with-
drawal of ring-bonding electrons at C(1) and C(8), and
bond stretching caused by overcrowding at this end of
the molecule. Similar effects are found in crystal-struc-
ture studies of 3-bromo-1,8-dimethylnaphthalene (Jame-
son & Penfold, 1965), 1,8-dinitronaphthalene (Akopyan,
Kitaigorodskii & Struchkov, 1965) and 1,8-bis(bromo-
methyl)naphthalene (Robert, Sherfinski & Roberts,
1973), although investigators of the first structures attach
no significance to these differences in bond distances.

The relative importance of strain and electronic ef-
fects in producing elongation of the C(1)-C(8) and
shortening of the C(4)-C(5) distances compared to

H(E3)
.
H(e2),
AT o)
2'4.9:" PN “u‘
':',' 268 “. e
4288 1 258 \\ ¥
R N () N
) ———C(8)0s .,
0 \\/\\/\ ,:*"/‘*QC”’\? H(s1 ))
26 l,él' D QAA/
25) [ ogpilS2 2555,
\ ,," 267/ ~u(sz,

Fig. 1. A representation of the molecule viewed along the
C(9)-C(10) bond, including selected intramolecular non-
bonded distances. E.s.d.’s are about 0-05 A for the C-H and
N-H distances and about 0-07 A for the H-H distances.

1615

naphthalene itself is not clear because, for some of the
bonds. both secem to operate in the same direction
Simple HMO calculations (Roberts, 1961) predict that

N(I1)-C(13)-H(3!) =106° N(12)-C(15)-H(51) = 99°

H(32)=109° H(52)=107°
H(33)-108° H(53)=113°
N(I1)-C(14)-H(41) =106° N(12)-C(16)-H(61) =107°
H(42)=113° H(62)=110°
H(43)=109° H(63)=111°

n7o° f 1732

122° 121-4°

H(I9) H(20)

®

Fig. 2. (a) An ORTEP (Johnson, 1965) representation of the
molecule, including all C-C and C-N bond distances (A)
and selected intramolecular non-bonded distances (A).
E.s.d.’s for the heavy atom distances are about 0-008 A (see
text). Ellipsoids are drawn at the 50 % probability level.
(b) Bond angles. E.s.d.’s for angles involving only C and N
atoms are about 0-3°; e.s.d.’s for angles involving H atoms
are between 3 and 5°,
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conjugation involving the nitrogen unshared pairs and
the naphthalene ring will tend, principally, to lengthen
the C(1)-C(2) and C(1)-C(9) bonds. The observed
bond-distance changes are in only fair agreement, es-
pecially since the largest change is in the C(3)-C(4)
bond which is quite substantially shortened.
Bond-angle distortion seems to be surprisingly small.
Compared to the values found in a neutron-diffraction
study of perdeuterionaphthalene (Pawley & Yeats, 1969),
the C(1)-C(9)-C(8) angle is enlarged by about 4° and
both the C(ring)-N bonds have been bent outwards
by about 2°. The close contacts of methyl groups C(14)
and C(15) with the ring hydrogen atoms H(17) and
H(22) presumably prevent further expansion of the
bond angles C(9)-C(1)-N(11) and C(9)-C(8)-N(12).
A principal mechanism for relief of the interactions
between the dimethylamino groups is the out-of-plane
distortion of the naphthalene ring. Deviations of the
heavy atoms from the best plane of the ring atoms C(1)-
C(10) are shown in Fig. 3. These deviations represent
primarily a twist about the central C(9)-C(10), which
remains a twofold symmetry axis essentially within ex-
perimental error. The twist, together with the bond-an-
gle and bond-stretching distortions, result in increasing
the non-bonded N---N distance by about 0-35 A -
from 2-44 A, as projected from the structure of per-
deuterionaphthalene, to 2:79 A. The N(11)---N(12)
distance of 2-79 A apparently does not in itself indicate
marked steric hindrance. The N---N van der Waals
radius estimated by Bondi (1964) is 3-10 A, and if one

PERI INTERACTIONS

-0-06 +0:07

Fig. 3. Deviations (A) from the mean plane of the ring system.
Direction cosines of the plane normal relative to the a, b,
and ¢ axes, are —0-1360, 0-1341, and — 0:9816, respectively:
the origin-to-plane distance is —1:692 A.

uses the parameters for the exp-6 equation for non-
bonded interactions developed by the procedure of
Scott & Scheraga (1965), 2-79 A corresponds to very
slight attraction between the nitrogens. Indecd, even
2:44 A would correspond to only 2-4 kcal of repulsion
energy between the nitrogens. Thus, either the exp-6
parameters calculated by the Scott & Scheraga proce-
dure are not reliable orelse N - - - N repulsionitself is not
the most important interaction in determining the mo-
lecular geometry. An alternative may be the combina-
tion of CH;- - -H and CHj;- - - N repulsions which result
from steric inhibition of resonance.

>

Fig. 4. A representation of the structure viewed along b.
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The temperature-factor ellipsoids are shown in Fig.
2(a); lengths of the principal axes are listed in Table 5.
A rigid-body treatment of the thermal motions (Scho-
maker & Trueblood, 1968) is not entirely satisfactory,
for the r.m.s. value of 4U,;, 0-0036 A2, is over twice as
large as the average standard deviation in these param-
eters (Table 2). Nevertheless, the treatment suggests
that the principal axes of libration are approximately
coincident with the axes of inertia of the molecule; the
mean-square amplitudes are about 19° for the libra-
tions in-plane and about the C(9)-C(10) axis, and about
12°% about the third axis. Implied corrections to bond
distances are approximately constant at 0-006 A for all
C-C and C-N bonds; we have ignored these correc-
tions.

The arrangement of the molecules in the crystal is
shown in Fig. 4.

Table 5. Analysis of the thermal ellipsoids

The first three columns contain mean square amplitudes of
vibration along the principal axes, and their e.s.d.’s (in paren-
theses). The final three columns contain the e.s.d.’s in the
orientations of the ellipsoids, expressed as angular displace-
ments (in degrees) about the major, intermediate and minor
axes, respectively (Lindblom, Marsh & Waser, 1972).

V]_ x10-3 sz 10-3 V3x 10-3 o ﬁ Y

c(1) 60 (1) A2 49 (1) A? 42 (1) A? 7° 3° 4°
C(2) 76 (2) 67 (2) 56 (1) 53 7
C@3) 102 (2) 85 (2) 52 (1) 2 2 4
C4) 103 (2) 64 (1) 42 (1) 31 2
C(5) 101 (2) 64 (1) 57() 10 2 2
C(6) 125 (2) 79 (2) 46 (1) 21 2
(7 93 (2) 72 (2) 55 (1) 4 2 4
C(8) 61 (1) 53 (1) 44 (1) 6 4 7
C(9) 55 (1) 46 (1) 37 (1) 6 3 6
C(10) 73 (1) 49 (1) 42 (1) 8§ 2 2
N(11) 72 (1) 55 (1) 41 (1) 313
N(12) 77 (1) 59 (1) 45 (1) 4 2 3
C(13) 90 (2) 73 (2) 48 (1) 2 25
C(14) 110 (2) 90 (2) 52 (1) 21 4
C(15) 132 (2) 95 (2) 53 (1) 21 3
C(16) 95 (2) 80 (2) 50 (1) 2 25

Concluding remarks

The molecule appears to have accommodated the bulky
peri substituents with surprisingly little strain. The
C(ring)-N bonds have retained a significant amount
of 7 character, and two of the N-C(methyl) bonds have
remained in the plane of the aromatic ring system. Close
interlocking of the hydrogen atoms is a key to the
molecular conformation. The hydrogen atoms of me-
thyl groups C(14) and C(15) are neatly staggered with
respect to the ring atoms H(17) and H(22), while H(33)
and H(62) of the other methyl groups are approximately
centered above and below the N(11)-C(1)-C(9)-C(8)-
N(12) crescent. The conformation seems to be excep-
tionally rigid; the temperature paramecters of the me-
thyl hydrogen atoms are only slightly larger than those
of the carbon atoms, and the asymmetry of the crystal
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forces (Fig. 4) has not been sufficient to destroy the
nearly exact twofold symmetry of the molecule.

The pK, value for this compound in water is about
12, as compared to values between 5 and 6 for the un-
methylated or monomethylated species (Alder, Bow-
man, Steele & Winterman, 1968). The remarkable basi-
city makes it a stable cation. Fenton, Truter & Vickery
(1971) have reported preliminary results of crystal struc-
ture studies of salts of this cation with tris(hexafluoro-
acetylacetonato)copper(ll) and with the isomorphous
magnesium derivative. In these compounds the nitro-
gen atoms and the cationic hydrogen atom are appar-
ently in the plane of the ring system, the dimethylamino
groups having been slightly rotated so that the methyl
groups are symmetrically disposed above and below
the plane of the naphthalene ring (conformation II, In-
troduction). The N---N distance is 2:62 A, corre-
sponding to a very strong hydrogen bond.

We are grateful to Dr Sten Samson for assembling
and maintaining the diffraction equipment and to Miss
Lillian Casler for much of the illustrative work.
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